

Date Planned ://	Daily Tutorial Sheet-2	Expected Duration : 90 Min		
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :		

Actu	ual Date	of Attempt : _	_//	JEE	Main (Archive)	Ex	act Duratio	on :	
16.		How many liters of water must be added to 1 L of an aqueous solution of HCl with a pH of 1 to creat aqueous solution with pH of 2? (20								
	(A)	0.1 L	(B)	0.9 L	(C)	2.0 L	(D)	0.9 L	(
17.	The p	H of a 0.1 mola	r solutio	n of the acid HQ) is 3. T	he value of the	ionizatio	n constant,	K _a of the acid	
	is:								(2006)	
	(A)	$3\!\times\!10^{-1}$	(B)	1×10^{-3}	(C)	$1\!\times\!10^{-5}$	(D)	$1\!\times\!10^{-7}$		
18.	The fi	The first and second dissociation constant of an acid H_2A are 1.0×10^{-5} and 5.0×10^{-10} respective								
	The o	The overall dissociation constant of the acid will be:							(2007)	
	(A)	$5.0\!\times\!10^{-5}$	(B)	$5.0\!\times\!10^{15}$	(C)	5.0×10^{-15}	(D)	$0.2\!\times\!10^5$	\odot	
19.	The K	S _{sp} for Cr(OH) ₃ i	is 1.6×1	0^{-30} . The molar s	solubilit	y of this compou	ınd in wa	ter is:	(2008)	
	(A)	$2\sqrt{1.6 \times 10^{-30}}$			(B)	$4\sqrt{1.6\times10^{-30}}$	ī			
	(C)	$4\sqrt{1.6 \times 10^{-30}}$	/27		(D)	$1.6 \times 10^{-30} / 2$	27			
20.	Four	species are listed	d below :						(2008)	
	(i)	HCO_3^-	(ii)	H_3O^+	(iii)	${ m HSO}_4^-$	(iv)	${ m HSO_3F}$		
	Which	Which one of the following is the correct sequence of their acid strength?								
	(A)	iv < ii < iii < i	(B)	ii < iii < i < iv	(C)	i < iii < ii < iv	(D)	iii < i < iv	< ii	
21.	An ac	An acid HA ionizes as HA \Longrightarrow H ⁺ + A ⁻ . The pH of 1.0 M solution is 5. Its dissociation constant woul								
	be:								(2009)	
	(A)	1×10^{-10}	(B)	5	(C)	5×10^{-8}		(D) 1	$\times 10^{-5}$	
22 .	Three reactions involving $H_2PO_4^-$ are given below:								(2010)	
	I.	$\mathbf{I.} \qquad \qquad \mathbf{H_3PO_4 + H_2O \longrightarrow H_3O^+ + H_2PO_4^-}$								
	II.	$H_3PO_4^- + H_2O$		$HPO_4^{2-} + H_3O^+$						
	III.	$H_2PO_4^- + OH^-$	\longrightarrow H ₃	$PO_4 + O^{2+}$						
	In wh	In which of the above does $H_2PO_4^-$ act as an acid?								
					\				()	

(A) II only (B) I and II (C) III only (D) I only

23. In aqueous solution, the ionization constants for carbonic acid are: (2010)

$$K_1 = 4.2 \times 10^{-7}$$
 and $K_2 = 4.8 \times 10^{-11}$

Select the correct statement fort a saturated $0.034~\mathrm{M}$ solution of the carbonic acid.

(A) The concentration of CO_3^{2-} is 0.034 M

(B) The concentration of ${\rm CO}_3^{2-}$ is greater than that of ${\rm HCO}_3^-$

(C) The concentration of H^+ and HCO_3^- are approximately equal

(D) The concentration of H^+ is double that of CO_3^{2-}

24.	Solubility product of silver bromide is 5.0×10^{-13} . The quantity of potassium bromide (molar mass as 120 g mol ⁻¹) to be added to 1 L of 0.05 M solution of silver nitrate to start the precipitate									
	AgBr is	: 1.2×10^{-10} g	(B)	1.2×10	⁻⁹ g	(C)	6.2×10^{-5} g	(D)	5.0×10^{-8} g	(2011)
25 .	At 25°C	c, the solubility j	product	of Mg(O	H) ₂ is 1	$.0 \times 10^{-1}$	¹ . At which pH,	will Mg	g ²⁺ ions start pro	ecipitating
	in the form of $Mg(OH)_2$ from a solution of 0.001 M Mg^{2+} ions?									(2012)
	(A)	9	(B)	10		(C)	11	(D)	8	
26.	How many litres of water must be added to 1L of an aqueous solution of HCl with a pH of 1 aqueous solution with pH of 2?								vith a pH of 1 to	create an (2013)
	(A)	0.1 L	(B)	0.9 L		(C)	2.0 L	(D)	9.0 L	
27 .	Solid I	Ba(NO ₃) ₂ is grad	dually d	issolved	in a 1	$.0 \times 10^{-4}$	M Na ₂ CO ₃ solu	ution. A	at what concent	rations of
	Ba^{2+} , will a precipitate begin to form ? $(K_{sp} \text{ for } BaCO_3 = 5.1 \times 10^{-9})$								2014)	
	(A)	$4.1 \times 10^{-5} \mathrm{M}$	(B)					(D)	$8.1 \times 10^{-7} \mathrm{M}$	\odot
28.	pK _a of	weak acid (HA)	and pK _l	b of a wo	eak base	е (ВОН)	are 3.2 and 3.4	, respec	tively. The pH of	their salt
	(AB) solution is:								(2017)	
	(A)	1.0	(B)	7.2		(C)	6.9	(D)	7.0	\odot
29.	Which of the following salts is the most basic in aqueous solution?								(2018)	
	(A)	FeCl_3				(B)	$\mathrm{Pb}(\mathrm{CH_{3}COO})_{2}$			
	(C)	Al(CN) ₃				(D)	$\mathrm{CH_{3}COOK}$			
30.	An alka	ali is titrated aga	ainst an	acid wit	h methy	yl orango	e as indicator, v	which of	the following is	a correct
	An alkali is titrated against an acid with methyl orange as indicator, which of the following is combination?								(2018)	
		Base	Acid		End po	int				
	(A)	Weak	Strong		Yellow to pinkish red					
	(B)	Strong	Strong		Pink to colourless					
	(C)	Weak	Strong		Colourless to pink					
	(D)	Strong	Strong		Pinkish red to yellow					